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Turbulent Flow Simulations of the NASA Common Research 
Model using the Immersed Boundary Method  

with a Wall Function 
Yoshiharu Tamaki1 and Taro Imamura2 

The University of Tokyo, Tokyo, 113-8656, JAPAN  

The transonic turbulent flows around the NASA Common Research Model is simulated to 
investigate the capability of the Cartesian-grid-based flow solver UTCart in 3D high Reynolds 
number flow simulations. Firstly, the framework of UTCart is explained. UTCart consists of an 
automatic Cartesian grid generator and a compressible flow solver. The immersed boundary method 
with a turbulent wall function is used in the flow solver to reproduce the turbulent boundary layer. 
The updates for UTCart related to the boundary heat flux and the calculation method for the cutoff 
distance are also described. Using UTCart, the medium grid (approx. 50 million cells) around the 
NASA-CRM is generated in 43 minutes. Compared with the grid converged value, the drag 
coefficient at the cruise condition has 24 drag count (8%) and 16 drag count (5%) differences in the 
medium and fine grid (approx. 97 million cells) results, respectively. Although the drag coefficient is 
slightly overestimated, all the component-wise aerodynamic coefficient shows a consistent trend of 
grid convergence. Furthermore, the qualitative flow features including flow separation at high 
angles of attack show a fair agreement with the experimental data and the computational results on 
the conventional body-fitted grids. 

Nomenclature 
 angle of attack = ߙ
ܿ = local chord 
CD = total drag coefficient 
CD,p = pressure drag coefficient 
CD,v = viscous (friction) drag coefficient 
CL = lift coefficient 
Cm = pitching moment coefficient 
ܿ௣  = specific heat at constant pressure 
Cp = pressure coefficient 
݀ = wall distance 
 pressure = ݌
ܶ = temperature 
 ఛ = friction velocityݑ
߬௜௝  = total stress tensor 
 kinematic viscosity = ߥ
௧ߥ  = kinematic eddy-viscosity 
 ෤ = working variable in the Spalart-Allmaras turbulence modelߥ
 density = ߩ
 
Subscripts 
 image point quantity = ܲܫ
 face center quantity = ܥܨ
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I. Introduction 
ierarchical Cartesian grid methods1-6 are attracting attention as the methods for rapid/automatic grid generation 
around 3D complex geometries. The methods are also suitable for aerodynamic design where many different 

configurations are tested. Furthermore, the grids contain only orthogonal cells, and thus they have advantages in the 
numerical accuracy and stability. However, the wall boundaries in the Cartesian grids are expressed as sets of step-
wise facets. Accordingly, additional treatments for the wall boundaries are required to recover smooth surface 
geometries. 
 The immersed boundary methods5, 6 are widely used to treat the wall boundaries in the Cartesian grids. They can 
maintain the simplicity and robustness of the grid generation because the generated Cartesian grid can be used without 
any additional processing (e.g. cell-cutting or overlapping). The authors are also developing a Cartesian-grid-based 
flow solver UTCart (The University of Tokyo Cartesian-Grid-Based Automatic Flow Solver) that uses the immersed 
boundary method for the wall boundary condition. UTCart consists of an automatic Cartesian grid generator and a 
compressible flow solver, which enable quick and automated flow simulation in the aircraft design. 
  However, application of the immersed boundary methods to simulation of high Reynolds number flows is a 
challenging problem. This is because the Cartesian grids contain only isotropic cells, and thus very small cells are 
needed to resolve the viscous sublayer of the turbulent boundary layers. In 3D problems, the number of cells near the 
wall boundary significantly increases when the grid size decreases, and thus the requirement for the cell size becomes 
especially problematic.  
 To solve the problem described above, the authors have developed an immersed boundary method for the 
Reynolds-averaged Navier-Stokes (RANS) simulations6. This method calculates the skin friction using a turbulent 
wall function, and thus the near-wall cell size can be equivalent to the height of the log-layer of the turbulent boundary 
layer. It has been also reported in the study that the modification of the velocity and eddy-viscosity profiles near the 
wall are essential to maintain the balance of numerical fluxes. In the 2D simple validation studies (e.g., a subsonic 
flow around the NACA0012 airfoil), the skin friction produced by the proposed method shows good agreement with 
the reference results on body-fitted grids7, and a consistent trend of grid convergence is observed. The method is 
incorporated in UTCart to enable high Reynolds number flow simulations. 
 The purpose of this research is to investigate the capability of UTCart in 3D high Reynolds number flow 
simulations. As the benchmark problem, transonic flows around the NASA Common Research Model (NASA-CRM) 

8 are simulated. The computed results are compared with the experimental data9 and computational results by the 
unstructured flow solver FaSTAR3 on conventional body-fitted grids. 
 The structure of this paper is as follows. In Section II, the overview of the automatic grid generator of the UTCart 
is described. In section III, the flow solver of UTCart including the turbulence wall boundary condition is explained. 
A few updates from the method described in the reference6 are included, which are related to the boundary heat flux 
and the calculation method for the cutoff distance that is required in the turbulent boundary condition. The setting of 
the simulation of the NASA-CRM is described in Section IV. The results are shown and discussed in Section V. 
Finally, Section VI concludes this paper. 

II. UTCart Grid Generator 
The UTCart grid generator creates Cartesian grids based on self-similar tree structure, i.e., a quad-tree (2D) or oct-

tree (3D). In UTCart, the cells are classified into three categories: wall, fluid and body cells. Cells that are intersecting 
with or including the input surface geometry are treated as the wall cells. The fluid cells are those completely outside 
of the object, and the other cells are treated as the body cells. In the flow calculation, only the fluid cells are used, and 
the boundary conditions are imposed at the center of the faces between the wall and fluid cells (point FC in Fig. 1) 
using the immersed boundary method. To determine the boundary condition, the image points (IP) are set in the fluid 
cells.  

 
Fig. 1 Classification of cells around a surface geometry. 
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A. Initial Grid Generation 
 The surface geometry of the input objects is defined by sets of line segments (2D) or by STL files (3D). In the grid 
definition file, we set the cell size and the boundary condition for each input objects. As shown in Fig. 2, binary-tree 
structure with bounding boxes is created for each input object in order to find the nearest segment quickly. In addition, 
box/line sources for local grid refinement can be defined. For the box source, the corner coordinates of the box and 
the cell size are specified. For the line source, the start/end point, the radius, and the cell size are assigned.  
 In the grid generation, the entire computational domain is named root cell. If the input objects exist in the 
computational domain, the root cell is a wall cell (Fig. 3 (a)). Next, the wall cells and the cells inside the sources for 
local refinement are recursively divided into 4 (2D) or 8 (3D) cells until the cell size becomes smaller than the value 
specified for the object or the source (Fig. 3 (b)). The grid is then smoothed to limit the size ratio between the adjacent 
cells to 2 (Fig. 3 (c)). The number of the cells in the wall/smoothing layer can be specified separately, as shown in Fig. 
4. Finally, the cells outside of the object are specified, and they are transferred into the flow solver (Fig. 3 (d)). 
 

 
Fig. 2 Binary-tree structure for the input surface geometry. 

 

 
(a) Input geometries (b) Initial grid generation 

 
(c) Grid smoothing (d) Setting of fluid cells 
Fig. 3 Outline of the Cartesian grid generation. 

 

Fig. 4 Setting of wall/smooth layer. 
 
 

smooth layer (4): 4

wall layer: 2
smooth layer (1): 6

smooth layer (2): 6

smooth layer (3): 4
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B. Setting of Image Point 
 The IP is set on the wall normal line passing through point FC. The distance between the IP and wall is a constant 
value ݎூ௉  times the size of the cell that includes point FC. The minimum value of ݎூ௉  is √2 in 2D and √3 in 3D to 
assure that the IP exists in a fluid cell. To capture the boundary layer, a large value of ݎூ௉  should also be avoided. 
Therefore, ݎூ௉  is fixed 2 in this research. Furthermore, a non-slip condition is imposed when the IP is located inside 
the body. This situation occurs where the grid size is insufficient to resolve the surface features (e.g. a small gap). 

III. UTCart Flow Solver 

 The flow solver of UTCart is based on the compressible Navier-stokes equation. The generated Cartesian grid is 
treated as an unstructured grid, and is discretized by the finite-volume method. The basic turbulent model is the 
Spalart-Allmaras (SA) model10 without the trip term (-noft2). The explicit Runge-Kutta method or implicit Lower-
Upper Symmetric Gauss-Seidel (LU-SGS)11/ Matrix-Free Gauss-Seidel (MFGS)12 are available for the time 
integration. For the inviscid term, Roe’s flux difference splitting13 or the SLAU scheme14 can be used with the second-
order MUSCL15 or the fourth-order upwind-biased scheme16. The second-order MUSCL is also used in the convection 
term of the SA equation. For the viscous term, the second-order central difference with a correction term17 is used to 
avoid the even-odd decoupling. To calculate the aerodynamic force working on the immersed body, the integration 
method based on the numerical flux (see Appendix A) is used.  

A. The Immersed Boundary Method 
To determine the physical quantities at FC (see Fig. 1), 1D profiles between the IP and wall are assumed. Note 

that the quantities at IP are linearly interpolated from the surrounding cells using the method described in the reference5. 
In the explanation below, the values at the IP and FC are represented by the subscripts ܲܫ and ܥܨ, respectively. In 
addition, the ݕ-coordinate is fixed to the wall normal direction for simplicity. 

In RANS simulations, the boundary condition using a turbulent wall function6 is imposed at the wall boundary. In 
this method, the friction velocity ݑఛ is determined by the Newton iterations at first, so that the wall tangential velocity 
at the IP satisfies the wall function profile: 

௧,ூ௉ݑ = ఛݑ ௪݂௔௟௟ ூ௉ݕ)
ା ), (1)  

where ݕା = ௪݂௔௟௟ ,ߥ/ఛ݀ݑ  is the kinematic viscosity, and ݀ is the distance from ߥ ,is the turbulent wall function (ାݕ)
the wall. For the turbulent wall function ௪݂௔௟௟  the SA wall model18 is used to keep the consistency with the SA ,(ାݕ)
turbulence model. Next, the modified tangential velocity profile is assumed using a partial slip condition (see Fig 5 
(a)): 

(ାݕ)௧ݑ = ௧,ூ௉ݑ − ൜
߲ ௪݂௔௟௟

ାݕ߲ ூ௉ݕ)
ା )ൠ ூ௉ݕ)

ା − ఛݑ (ାݕ . (2)  

Note that the first derivative of the wall function can be calculated analytically6. Although the actual velocity profile 
in the turbulent boundary layer is a non-linear function, the modified profile is linear with respect to the wall distance. 
Thus, the modified velocity profile can be resolved on a Cartesian grid without layer cells. The boundary condition 
for the tangential velocity at point FC is calculated by substituting ݕା = ி஼ݕ

ା  in eq. (2). 
 Furthermore, the eddy-viscosity profile must be modified to maintain the balance of the shear stress. From the 
boundary-layer approximation, the shear stress is constant with respect to the wall distance. In the modified velocity 
profile (2), the velocity gradient is also constant. Thus, the required condition for the eddy-viscosity is ߥ௧ = const. 
between the IP and wall. In the SA turbulence model, the relationship between the working variable ߥ෤ and the eddy 
viscosity ߤ௧  is 

௧ߤ = ෤ߥߩ ௩݂ଵ , (3)  
where ௩݂ଵ is the wall damping function. The SA turbulence model has a linear solution ߥ෤ = ߢ) ݕఛݑߢ = 0.41) in the 
inner layer of a developed turbulent boundary layer. Thus, the wall-damping function ௩݂ଵ in the SA turbulence model 
is modified as follows to realize the constant eddy-viscosity: 

௩݂ଵ = ቊ ௩݂ଵ,௪     ൫݀ < ݀௖௨௧௢௙௙൯

௩݂ଵ,௙     ൫݀ ≥ ݀௖௨௧௢௙௙൯
, 

௩݂ଵ,௪ = ௗݎ
ଷ(ௗݎ߯)

௩ܿଵ
ଷ + ௗݎ߯) )ଷ, 

௩݂ଵ,௙ =
߯ଷ

߯ଷ + ܿ௩ଵ
ଷ , 

(4)  
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where ܿ௩ଵ=7.1，߯ = ௗݎ and ߥ/෤ߥ = ݀௖௨௧௢௙௙ /݀. Here, the cutoff distance ݀௖௨௧௢௙௙ is equal to the distance between the 
IP and wall. The near-wall damping function ௩݂ଵ,௪ is proportional to the inverse of the distance ݀, and thus the eddy-
viscosity becomes constant below the cutoff distance (Fig 5 (b)). 
 One modification is made on the temperature boundary condition. In the previous study, the near-wall temperature 
profile is given by the Crocco-Busemann relationship19 as 

ிܶ஼ = ூܶ௉ +
ݎܲ

ଵ
ଷ

2 ௣ܿ
൫ݑ௧,ூ௉

ଶ − ௧,ி஼ݑ
ଶ ൯, (5)  

where ܶ is the temperature, the Prandtl number ܲݎ  = 0.72, and ௣ܿ  is the specific heat at constant pressure. In the 
updated method, the temperature profile is also modified to match the modified velocity profile. Here, the normal 
temperature gradient is calculated by differentiating the Crocco-Busemann relationship as 

݀ܶ
ݕ݀ = −

Pr
ଵ
ଷ

ܿ௣
௧ݑ

௧ݑ݀

ݕ݀ . (6)  

In the modified velocity profile (2), the normal gradient of the tangential velocity (݀ݑ௧/݀ݕ) is constant between the 
IP and wall. The tangential velocity ݑ௧ is not constant, but ݑ௧~ݑ௧,ூ௉ is assumed. This is because the velocity gradient 
in the log-layer of the turbulent boundary layer is generally small, and the modified velocity profile (2) gives only a 
small deviation from ݑ௧,ூ௉. Therefore, the temperature gradient (݀ܶ/݀ݕ) becomes nearly constant in the modified 
profile.  
 The boundary condition for the temperature at point FC should be consistent with the conditions described above. 
Thus, the temperature is 

ிܶ஼ = ூܶ௉ −
݀ܶ
ݕ݀

ฬ
ூ௉

ூ௉ݕ) − ி஼ݕ ), (7)  

where the normal temperature gradient is calculated as 

݀ܶ
ݕ݀

ฬ
ூ௉

=
Pr

ଵ
ଷ

௣ܿ
௧,ூ௉ݑ

௧ݑ݀

ݕ݀
ฬ

ூ௉
 

            =
Pr

ଵ
ଷ

ܿ௣
௪݂௔௟௟ ூ௉ݕ)

ା ) ൜
߲ ௪݂

ାݕ߲ ூ௉ݕ)
ା )ൠ

ఛݑ
ଷ

ߥ . 

(8)  

This boundary condition assumes a linear profile of the temperature gradient (Fig. 5 (c)). Here, the heat flux is 

௬ݍ = −ܿ௣ ൬
ߤ
Pr

+
௧ߤ

Pr୲
൰

݀ܶ
ݕ݀

, (9)  

where Pr୲ is the turbulent Prandtl number (=0.90). The eddy-viscosity is also modified to be constant between IP and 
wall, and thus, the heat flux becomes constant between the IP and wall. 
 The remaining boundary conditions are given as follows. The wall normal velocity at point FC is derived from a 
non-penetration condition at the wall: 

௡.ி஼ݑ = ௡,ூ௉ݑ
݀ி஼

݀ூ௉
. (10)  

The pressure is assumed to be constant in the boundary layer: 
ி஼݌ = ூ௉݌ . (11)  

The density is 
ி஼ߩ =

ி஼݌

ܴ ிܶ஼
, (12)  

where ܴ is the gas constant. In addition, the boundary condition for ߥ෤ is derived from the near-wall solution of SA 
turbulence model as 

෤ி஼ߥ = ఛ݀ி஼ݑߢ . (13)  
 The inviscid flux is computed by an upwind flux ۴ = ,ۺܙ)۴  is the extrapolated quantities from the ۺܙ where ,(۴۱ܙ
fluid cells, and ۴۱ܙ  is the quantities at point FC given by eqs. (2, 10-13). The magnitude of the viscous stress ߬ at point 
FC is directly imposed as ߬ி஼ = ఛݑߩ

ଶ. Furthermore, the heat flux is modified to be constant between the IP and wall. 
Thus, the boundary heat flux at point FC is calculated using the quantities at the IP as 

௬,ி஼ݍ = − ௣ܿ ൬
ߤ
Pr

+
௧,ூ௉ߤ

Pr୲
൰ 

݀ܶ
ݕ݀

ฬ
ூ௉

. (14)  
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(a) Tangential Velocity (b) Eddy-viscosity (c) Temperature 

Fig. 5 Modified profiles of variables near wall. 

B. Calculation of Wall/Cutoff Distance 
In the SA turbulence model, the distance from the nearest wall is required in each cell. In UTCart, the levelset 

method20 is used to calculate the distance. The distance is given by the solution of the equation for the distance function 
߶ = ,ݔ)߶ ,ݕ ,ݖ ߬) 

߲߶
߲߬ = 1 − ඨ൬

߲߶
ݔ߲

൰
ଶ

+ ൬
߲߶
ݕ߲

൰
ଶ

+ ൬
߲߶
ݖ߲

൰
ଶ

 (15)  

at the pseudo time ߬ → ∞. The boundary condition for eq. (15) is imposed at point FC by calculating the distance 
between point FC and wall directly. 
 In addition, the cutoff distance ݀௖௨௧௢௙௙ is required in eq. (4) to calculate the eddy-viscosity at each cells. The cutoff 
distance is equal to the IP distance (or ݎூ௉  times cell size) at the nearest wall. The cutoff distance is constant when the 
same cell size is assigned to all the objects in the computational domain. If there are multiple objects that have different 
cell sizes, however, all the cells in the domain need to know which object is the nearest. It is even more difficult to 
know the cell size at the nearest wall when a local refinement has a smaller cell size than that assigned to the objects. 
 Therefore, a new method to calculate the cutoff distance is developed using the advection equation that propagates 
the wall information to the domain. The cutoff distance must be constant in the wall normal direction. Here, the 
advection equation for the cutoff distance function ߰ = ,ݔ)߰ ,ݕ ,ݖ ߬) is 

߲߰
߲߬ + ݊௫

߲߰
ݔ߲ + ݊௬

߲߰
ݕ߲ + ݊௭

߲߰
ݖ߲ = 0, (16)  

where ݊௫ , ݊௬, ݊௭ is each component of the normal vector. The normal vector is calculated by differentiating of the 
levelset solution ߶ as 

݊௫ =
߲߶
ݔ߲ , ݊௬ =

߲߶
ݔ߲ , ݊௭ =

߲߶
  (17) .ݔ߲

The derivatives are calculated by the linear least-squares method. The wall boundary condition of the advection 
equation (16) is imposed at point FC as a Dirichlet boundary condition ߶ = ௅ݔூ௉Δݎ , where Δݔ௅ is the size of the cell 
including point FC. Also, a non-gradient boundary condition is imposed at the far-field. Equation (16) is spatially 
discretized by the finite-volume method as 

߲߰௜

ݐ߲ +
1

௜ܸ
෍ ௜௝ݏ෨௜௝ܨ
௝∈௜

= 0, (18)  

where ݆ denotes the index of the neighbour cells around cell ݅, ௜ܸ  is the cell volume,  ܨ෨௜௝  is the numerical flux on the 
face between cells ݅ and ݆, and ݏ௜௝  is the face area. Note that summation is not taken in terms of the indexes ݅ and ݆. 
The time is advanced by a the first-order Euler explicit method. To stabilize the computation, an upwind numerical 
flux is used. Here, the numerical flux at the face between cells ݅ and ݆ is 

෨௜௝ܨ =

⎩
⎨

⎧
߰௜ ௜ߙ ௜ߙ) > 0)

߰௜ + ௝߰

2 ௜ߙ ௜ߙ) ≤ ௝ߙ ݀݊ܽ 0 > 0)

௝߰ߙ௜ ௜ߙ) ≤ ௝ߙ ݀݊ܽ 0 ≤ 0)

 (19)  
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where the normal advection speed ߙ is the inner product of the normal vector (݊௫, ݊௬ , ݊௭) and the face normal. Note 
that eq. (19) is the flux seeing from cell ݅, and the flux seeing from cell ݆ can be different. This definition of the flux 
can stop the propagation when information from two directions intersects. Finally, the cutoff distance ݀௖௨௧௢௙௙  is given 
by the solution of the function ߰ at ߬ → ∞. 
 For example, the computed cutoff distance around two airfoils in a 2D domain is illustrated in Fig. 6. The cell 
sizes assigned to the upper and lower airfoils are 0.04 and 0.02, respectively. In addition, a local refinement with Δݔ 
= 0.01 is located near the leading edge of the lower airfoil. It is confirmed that the computational domain is correctly 
divided into three domains by the cell sizes at the nearest wall, and that the calculated cutoff distance is ݎூ௉ times the 
cell size at the nearest wall. 

 
Fig. 6 Example of the computed cutoff distance around two airfoils including local refinement. 

IV. Computational Settings 

A. Problem Definition 
We simulate a half-cut model of the wing-body-tail configuration of the NASA-CRM8 with the tail incidence 

attack ݅ு = 0 deg. The geometry is initially designed for the benchmark problem in the NASA drag prediction 
workshop21. Recently, another workshop called the aerodynamic prediction challenge (APC) 22 was held in Tokyo, 
2015, and in Kanazawa, 2016, in order to improve the prediction accuracy of aerodynamic performance of an aircraft. 
Experimental study9 was also conducted in JAXA’s transonic wind tunnel using a 2.16% model (the mean 
aerodynamic chord ܿ௥௘௙=151.31 mm). The conditions of the calculation are adjusted to the experimental setting: the 
Reynolds number based on ௥ܿ௘௙  is 2.26×106, the freestream Mach number is 0.847, the freestream temperature ௥ܶ௘௙  is 
284 K, and the angles of attack ߙ are -1.79, -0.62, 0.32, 1.31, 2.94, 3.55, 4.65, 5.72 deg. The aerodynamic deformation 
of the main wing is considered at each angle of attack according to the experimental data.  

B. Computational Grid and Methods 
UTCart uses octree-based Cartesian grids (see Fig. 7). To investigate the trend of grid convergence, three grids 

with different resolution of cells are prepared, as described in Table 1. The length scale in the table is based on the 
actual scale of the NASA-CRM (ܿ௥௘௙ = 275.8 in). The number of the smooth layer is changed as well as the grid size 
to obtain a fair grid convergence. Note that the total cell number slightly varies depending on the angle of attack due 
to the aerodynamic deformation of the model, and the numbers described in the table are those at 2.94 = ߙ deg. The 
wing upper surface and the tail is covered by the finest level of the grid and the other part is covered with the second 
finest grid. The grid is generated on a work station (Xeon E5-2643 v3 at 3.4 GHz) using 1 core. The wall clock time 
and memory usage for the generation of the medium grid are 43 minutes and 50 GB, respectively. 

In addition, reference solutions are computed using JAXA’s unstructured flow solver FaSTAR23 on the body-fitted 
structured grids that are provided in the APC-III workshop (see Fig. 8). The calculation by FaSTAR is conducted at 
 deg on the fine grid (30,397,977 2.94 = ߙ deg on the medium grid (9,006,808 cells), and 5.72 ,4.65 ,2.94 ,0.62- = ߙ
cells). 

-1 -0.5 0 0.5 1 1.5 2-1

-0.5

0

0.5

1

1.5

2

dist_cutoff

0.085
0.075
0.065
0.055
0.045
0.035
0.025
0.015
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In both of the flow solver, the QCR-2000 correction24 is used with the SA turbulence model. The reference25 has 
reported that this correction improves prediction of the side-body separation at the high angles of attack. UTCart also 
uses the negative model18 to avoid instability of the calculation where ߥ෤ become negative. The other calculation 
method is tabulated in Table. 2. 
 

 
(a) Overview (very coarse grid for visualization, minimum grid size: 3.91 in) 

 

  
(b) Main wing tip (c) Main wing root 

  

 
(d) Symmetry plane near nose 

Fig. 7  Computational grid for UTCart (Medium grid except for the overview). 
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Table 1 UTCart grid settings around NASA-CRM. 
 Coarse Medium Fine 
Total cell number  24,415,860 50,323,727 97,041,807 
Domain size  in 4.80×104 3.60×104 5.40×104 
Grid size (wing upper surface / tail)  in 0.732 0.549 0.412 
Grid size (wing lower surface / fuselage)  in 0.366 0.274 0.206 
Smooth layer (near field) 3 6 8 
Smooth layer (far field) 3 3 3 
Mean aerodynamic chord / Grid size  
(wing upper surface) 

753 1,004 1,339 

 

 
Fig. 8  Overview of computational grids for FaSTAR (Medium Grid). 

 
Table 2  Computational methods. 

Solver UTCart FaSTAR 
Inviscid flux SLAU 

Spatial Scheme (Inviscid term) Second–order MUSCL 
Limiter Barth-Jespersen26 Hishida27 

Spatial Scheme (Viscous term) Second order central difference 
Gradient Estimation Weighted least-squares (G)28 GLSQ28 

Time Integration MFGS LUSGS 

V. Computational Results 
The UTCart computation on the medium grid at 2.94 = ߙ deg requires 8000 iterations with a local time stepping 

at CFL = 100 to obtain the convergence. The magnitude of the oscillation of the drag coefficient in the final 1000 
iterations is within 0.1 drag count (1 drag count = 10-4). The computation was executed on the Reedbush-U 
supercomputer in the University of Tokyo (Xeon E5-2697 v4 at 2.1 GHz×2 per node) using 4 nodes (144 cores) with 
the MPI parallelization. The wall-clock time and memory usage for one medium grid case are approximately 5.5 hours 
and 60 GB, respectively. 

A. Grid Convergence Study at 2.94 = ࢻ deg 
The grid convergence at 2.94 = ߙ deg is examined. At this condition, the lift coefficient is similar to the value at 

the cruise condition of the NASA-CRM (ܥ௅  =0.5). Figure 9 shows the distribution of ݕା at the IP on the UTCart 
medium grid. Note that the surface values are extrapolated from the Cartesian grid onto the input surface CAD data. 
On the wing upper surface and the tail, the magnitude of ݕା is small compared with the other parts because the distance 
between the IP and wall is proportional to the grid size assigned to the parts. The maximum value of ݕା on the wing 
upper surface is 364. In the previous study on the immersed boundary method6, the distribution of the pressure on an 
airfoil can be accurately predicted on a grid that has a similar value of ݕା. 

The pressure distributions on the surface in the results by UTCart on the medium grid and by FaSTAR on the 
medium grid are compared in Fig. 10. The qualitative feature of the distribution including the position and shape of 
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the shock on the wing upper surface shows fair agreement between the two results. The surface pressure distribution 
at the wing sections is visualized in Fig. 11. The sections are identical with the pressure tap position in the experiment, 
as visualized in Fig. 12. At section E, the thickness of the shock in the UTCart result is slightly smaller than that in 
the FaSTAR result. This is because the UTCart grid has higher chord-wise grid density than that of the grid for 
FaSTAR.  

Figure 13 shows the component-wise aerodynamic coefficients. The pressure drag coefficient computed by the 
UTCart is overestimated compared with the FaSTAR result. The main causes of the overestimation are the wing and 
tail. Similarly, the pitching moment coefficient is underestimated in the UTCart result, although the trend of grid 
convergence is observed. These discrepancies may be due to the grid resolution of the leading edge/trailing edge. The 
grid convergence behavior of the total drag coefficient is shown in Fig. 14. The drag coefficient is plotted versus 
ܰି ଶ/ଷ , where ܰ  is the total cell number. The FaSTAR result will converge to 307 drag counts. The linearly 
extrapolated value in the UTCart results using the medium and fine grids (the left 2 points) is slightly larger. However, 
the slope between the left two point in the UTCart result is steeper than from that between the right two point, and the 
grid converged value can be smaller than the extrapolated value in the figure. The differences between the values 
predicted UTCart and the grid converged value of the FaSTAR result are 35 (11%), 24 (8%) and 16 (5%) drag counts 
on the coarse/medium/fine grids, respectively. 

 
Fig. 9 Distribution of ࢟ା at the image point (Medium grid, 2.94=ࢻ deg). 

 

  
(a)  UTCart (Medium grid) (b)   FaSTAR (Fine grid) 

Fig. 10 Distribution of surface pressure (2.94=ࢻ deg). 
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UTCart (Fine)
UTCart (Coarse)
FaSTAR (Fine)
Experiment9

AoA=2.94, section A

 
(a) Section A (b) Section E 

 
(c) Section I 

Fig. 11 Surface pressure coefficients at each section (2.94=ࢻ deg). 
 

 
Fig. 12 Definition of the wing sections. 
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(a) Pressure drag coefficient ܥ஽,௣ (b) Viscous drag coefficient ܥ஽,௩ 

  
(c) Lift coefficient ܥ௅ (d) Pitching moment  ܥெ  

Fig. 13 Component-wise aerodynamic coefficients (2.94=ࢻ deg). 
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Fig. 14 Grid convergence of the drag coefficient (2.94=ࢻ deg). 
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B. ࢻ Sweep 
Figure 15 shows the computed and measured aerodynamic coefficients at each angle of attack. The basic trend of 

each coefficient shows a fair agreement between the UTCart and FaSTAR results, and between the UTCart results 
and the measured data. In the computational results, however, the lift slope and the pitching moment coefficient is 
underestimated, while the drag coefficient is overestimated compared with the experimental data. The UTCart and 
FaSTAR results have these discrepancies in common, and thus they may be due to the difference of the configuration 
between the experiment and the computation (e.g. the support sting).  
 Figure 16 shows the surface pressure coefficient at 4.65 = ߙ deg. The difference of the pressure on the upper 
surface between the UTCart result and the experimental data is more visible than the 2.94 = ߙ deg case. It is because 
flow separation occurs near the wing-body junction and behind the shock as shown in Fig. 17. Although both flow 
solver reproduce a similar pattern of the flow separation, the area and the shape of the separated region is different. 
The separated region in the UTCart result is slightly smaller than the FaSTAR result. Also, the friction in the separated 
region is small in the UTCart result. This is because the wall function is used even in the separated region, and the 
boundary condition assumes the turbulent boundary layer attaches in the negative direction of the ݔ -axis. The 
prediction of the flow separation is a continuing concern in the aerodynamic prediction of the NASA-CRM25,29-31 even 
on body-fitted grids, and the prediction accuracy needs be investigated further with different grids or turbulence 
models. 
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(c) ܥெ −  ߙ

Fig. 15 Aerodynamic coefficients at each angle of attack. 
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(a) Section A (b) Section E 
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(c) Section I 

Fig. 16 Surface pressure coefficients at each section (4.65=ࢻ deg). 
 

 

  
(a) UTCart (Medium grid) (b) FaSTAR (Medium grid) 

Fig. 17 Surface friction and streamline over the main wing (4.65=ࢻ deg). 
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VI. Summary 
The transonic flows around the NASA Common Research Model was simulated to investigate the capability of the 

Cartesian-grid-based flow solver UTCart in 3D high Reynolds number flow simulations. Firstly, the framework of 
UTCart was explained. UTCart consists of an automatic Cartesian grid generator and a compressible flow solver. In 
the flow solver, the immersed boundary method with a turbulent wall function is used to reproduce the turbulent 
boundary layer. Some updates for the computational method was also explained. The relationship between the eddy-
viscosity and the temperature near wall is clarified, and the boundary heat flux was updated. Furthermore, the 
calculation method of the cutoff distance that is required in the turbulent boundary condition was developed using an 
advection equation. 

Using the UTCart grid generator, the medium grid (approx. 50 million cells) was generated in 43 minutes. On the 
medium grid, the ݕା on the wing upper surface is up to 364, and more than a thousand cells are located in the mean 
aerodynamic chord. The trend of each component-wise aerodynamic coefficient showed a consistent trend of grid 
convergence toward the values computed on a conventional body-fitted grid, although the drag coefficient was slightly 
overestimated. Compared with the grid converged value, the drag coefficient at the cruise condition had 24 (8%) and 
16 drag count (5%) differences in the medium and the fine grid (approx. 97 million cells) results, respectively. 
Furthermore, the trend of the aerodynamic coefficients and the qualitative flow features including flow separation at 
high angles of attack showed a fair agreement with the experimental data and with the computational results on the 
body-fitted grids. 

Appendix A. Surface Force Integration on Cartesian Grids 
On the Cartesian grids, the cell boundary is different from the actual surface of the object. Thus, the aerodynamic 

force acting on the object is evaluated based on the balance of the numerical flux through the cell boundary. The 
method starts from the equation of the momentum conservation 

∂
ݐ߲

(௜ݑߩ) +
∂

௝ݔ߲
൫ݑߩ௜ݑ௝ + ௜௝൯ߜ݌ =

∂߬௜௝

௝ݔ߲
+ ௜݂ , (A.1) 

where ߩ is the density, ݑ௜  is the component of the velocity, ݌ is the pressure, ௜߬௝  is the component of the stress tensor, 
and ௜݂ is the component of the body force. The aerodynamic force working on the object is calculated as a reaction of 
the force working on the fluid. Thus, integrating eq. (A.1) in the domain within the cell boundary Γୋ (see Fig. A), and 
applying the divergence theorem yields 

௜ܨ = − න ൛ݑߩ௝ݑ௜ + ݌) − ௜௝ߜ(ஶ݌ − ߬௜௝ൟ ௝݊݀ܵ
୻ృ

− න
(௜ݑߩ)߲

ݐ߲ ܸ݀
୚భ

, (A.2) 

where ܨ௜  is the aerodynamic force in ݅th direction, ௝݊  is the component of the normal vector of Γୋ, and Vଵ is the domain 
between Γୋ and the object. Here, the volume of Vଵ is small, and the flow in this domain is assumed to be nearly steady. 
Thus, the unsteady term (the second term) in eq. (A.2) is neglected. Equation (A.2) also assumes that no source/sink 
of mass exists in Vଵ . However, the immersed boundary method does not assure a strict mass conservation in Vଵ. 
Therefore, a compensation term for the mass source/sink is added to (A.2) with assuming the mass recovers the free-
stream velocity at the far-field: 

௜ܨ = − න ൛ݑߩ௝ݑ௜ + ݌) − ௜௝ߜ(ஶ݌ − ߬௜௝ ൟ ௝݊݀ܵ
୻ృ

+ ܯ̇ ஶܷ,௜ , (A.3) 

where ̇ܯ is the mass source/sink (a source has a positive value), ஶܷ,௜  is the component of the free-stream velocity. 
The mass source/sink is evaluated by the integration of the continuity equation along Γୋ as 

ܯ̇ = න ௝ݑߩ ௝݊݀ܵ
୻ృ

. (A.4) 

Here, substituting (A.4) into (A.3) yields 

௜ܨ = − න ൛ߩ൫ݑ௝ − ܷஶ,௝൯ݑ௜ + ݌) − ௜௝ߜ(ஶ݌ − ௜߬௝ൟ ௝݊݀ܵ
୻ృ

. (A.5) 

In the flow solver, equation (A.5) is discretized on the faces that compose Γୋ as 
௜ܨ = − ෍ൣ൛〈൫ݑߩ௜ݑ௝ + ௜௝൯ߜ݌ ௝݊〉

୤ୟୡୣ

− ௝ݑߩ〉 ௝݊〉ܷஶ,௜−݌ஶߜ௜௝ − 〈߬௜௝ ௝݊〉ൟΔܵ൧
୤ୟୡୣ

, (A.6) 

where 〈൫ݑߩ௜ݑ௝ + ௜௝൯ߜ݌ ௝݊〉  and 〈ݑߩ௝ ௝݊〉  are the components of the inviscid flux through the face, 〈 ௜߬௝ ௝݊〉  is the 
component of the viscous flux, and Δܵ is the area of the face. The fluxes in (A.6) must be the numerical fluxes used 
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in the flow calculation. Note that the integration of only the viscous flux represents the viscous component of the 
aerodynamic force, and the remainder is considered as the pressure component.  
 

 
Fig. A  Description of the domain and boundary topologies. 
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